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Replay shapes abstract cognitive maps for 
efficient social navigation

Jae-Young Son    1, Marc-Lluís Vives    2, Apoorva Bhandari    1,4  & 
Oriel FeldmanHall    1,3,4 

To make adaptive social decisions, people must anticipate how information 
flows through their social network. While this requires knowledge of how 
people are connected, networks are too large to have first-hand experience 
with every possible route between individuals. How, then, are people 
able to accurately track information flow through social networks? Here 
we find that people immediately cache abstract knowledge about social 
network structure as they learn who is friends with whom, which enables the 
identification of efficient routes between remotely connected individuals. 
These cognitive maps of social networks, which are built while learning, 
are then reshaped through overnight rest. During these extended periods 
of rest, a replay-like mechanism helps to make these maps increasingly 
abstract, which privileges improvements in social navigation accuracy for 
the longest communication paths that span distinct communities within 
the network. Together, these findings provide mechanistic insight into the 
sophisticated mental representations humans use for social navigation.

In a set of now-classic studies, Stanley Milgram asked subjects in Nebraska 
to forward a letter to a target individual they did not know. Subjects were 
only told the person’s name and that they lived in Boston. The job was to 
mail the letter to someone who could, in turn, forward the letter closer 
to the target. Remarkably, of the letters that eventually reached their 
target, the source and target were only separated by about six degrees1. 
Milgram’s study illustrates the fundamental challenge of social naviga-
tion: human networks are vast yet densely connected, meaning that a 
variety of things—gossip, ideas, norms, disease and more—are susceptible 
to being amplified and spread by social networks2. To navigate this web 
of relationships, people must anticipate how information flows, which 
requires understanding how people are connected3,4. Although this is 
an inherently difficult problem, Milgram’s result suggests that people 
are surprisingly capable of navigating social networks, even if they lack 
full knowledge of how people are connected within them. Yet, despite 
decades of active interest, little is known about the cognitive mechanisms 
that enable people to solve social navigation problems.

What kinds of mental representations might support social naviga-
tion? Decades of research on spatial navigation offers a useful window 

into how humans might organize complex relational information. It 
is well established that knowledge about physical environments is 
represented in cognitive maps of spatial relationships5–7. The format of 
these spatial maps allows objects to be placed within two-dimensional 
mental spaces6,8, affording representation of the longer-range relation-
ships between those objects. Outside of spatial navigation, recent 
work demonstrates that humans also represent abstract maps of con-
ceptual spaces9–11, including social traits such as competence and 
popularity12,13. However, relationships in social networks are poorly 
characterized by two-dimensional spaces, and it is not known what 
alternative format(s) might instead be used to build abstract cognitive 
maps of social networks.

Recent work in cognitive neuroscience points to a candidate 
repre sentational format for social networks that encodes not only 
the direct connections between entities (for example, friendships), 
but also longer-range, multi-step connections (for example, friends 
of friends)11,14–20. This abstracted representation of social networks is 
related to successor representations (SRs) in reinforcement learning 
and can be learned using simple, biologically plausible mechanisms. 
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maps to solve the challenge of social navigation, we created a task 
where subjects learn about friendships in a social network (Fig. 1a), 
allowing us to probe how people navigate information flow through a 
community (Fig. 1c). We then either had subjects take the navigation 
task immediately, or brought subjects back to the laboratory the next 
day to test whether navigation accuracy improved after overnight 
rest (Fig. 1f). Using computational modelling, we characterized the 
underlying cognitive maps employed by subjects and further tested 
whether a replay-like mechanism helps to scaffold more successful 
social navigation.

Humans can efficiently solve social navigation 
problems
We developed a novel ‘message-passing’ task as an experimental testbed 
of flexible social navigation, which assessed whether people understand 
how information flows throughout the network (Fig. 1c). On each trial, a 
network member wished to pass a letter to a target within the network, 
and needed to choose between sources A and B. If source A were chosen, 
A would pass the letter to one of their friends, who would pass it to one 
of their friends, and so on until the letter was delivered to the target. 
The subject’s task was to choose the source that would result in the 
most efficient delivery. Trials were classified according to the shortest 
path distance from the network member who had sent the letter. For 
example, when the correct source was friends with the target directly, 
we classified these as distance-two problems, as the message needed to 
be passed twice to reach the target. An accurate response was defined 
as choosing the source with the shortest path to the target (Methods). 
The target changed from trial-to-trial such that successful navigation 
required flexible use of knowledge about connections between network 
members. The two sources presented on each trial were always friends 
of the message sender to prevent potential confounds, and to rule out 
the possibility that navigation accuracy might improve simply from 
experience with the task. Subjects were never provided with feedback.

By adjusting how many steps are integrated over, network representa-
tions can be learned at various levels of abstraction21, where greater 
abstraction confers rapid inference about distant relations, as well as 
the existence of network structures, such as communities4,15,22,23. This 
ability to represent longer-range relations is likely to aid social naviga-
tion, including tasks such as predicting where gossip might spread if 
shared with a given individual.

A second question revolves around how people efficiently build 
maps from limited direct experience. Evidence from rodent and human 
neuroscience points to an important role of replay, where the brain 
generalizes from experience to simulate synthetic observations that 
can drive additional learning, especially prioritizing those that are most 
critical for adaptive navigation24–30. Indeed, it has long been noted that a 
replay-like mechanism appears necessary to learn sufficiently abstract 
representations for navigation15–17. Offline replay during sleep appears to 
play an especially important role in generating more abstract representa-
tions of the environment31–35. As abstraction can help reveal the under-
lying structure of a given environment and therefore aid longer-range 
navigation15,18, it is probable that extended periods of rest, such as over-
night sleep, are critical for building the kinds of abstract representations 
needed for longer-range navigation through social networks.

Therefore, multi-step abstraction not only specifies a useful for-
mat for representing the topology of graph structures, such as social 
networks4,11,16–18,23, but also provides a natural interface between cogni-
tive maps and replay. Although multi-step abstraction is an attractive 
model of how people represent and navigate social networks, past 
research has only established that people’s memory representations 
of social networks are consistent with multi-step abstraction4, and 
it is yet unknown whether, or how, multi-step abstraction supports 
navigation behaviours.

Here, we test whether humans rely on cognitive maps of social 
networks for social navigation and if a replay-like mechanism supports 
more successful social navigation. To assess humans’ use of cognitive 
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Fig. 1 | Study design. a, The learning task used ‘flashcards’ to facilitate rapid and 
accurate learning. When presented with a target network member, subjects were 
required to find all the target’s friends from the face-down cards. When a card 
corresponding to the target’s friend was selected, the card was flipped face up 
to reveal their photograph. Cards remained face down in response to incorrect 
guesses. b, The memory test presented a target and required subjects to indicate 
all of the target’s friends. No feedback about accuracy was ever provided. c, The 
social navigation task presented a network member wishing to send a message 
to a target through one of two sources. Subjects were required to indicate which 

source was the better choice for efficient delivery to the target. d, The social 
network learned by subjects. e, In studies 2 and 3, subjects were informed that 
some of the friendships had been broken and that others had formed. This 
necessitated rapid re-evaluation of how network members were related to one 
another. f, A schematic illustrating what tasks subjects completed on what 
days, in which studies. The colour coding corresponds to the task labels in a–e. 
Yellow and green indicate completion of the navigation task for the learned 
and re-evaluated networks, respectively. All avatar icons were generated using 
getavataaars.com, designed by Pablo Stanley and developed by Fang-Pen Lin.
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Across three laboratory studies (total N = 146; data pooled for 
efficiency, but results were replicated across all studies; Supplemen-
tary Table 3), subjects completed this navigation task shortly after 
learning friendships in a novel social network. (Fig. 1a). Subjects never 
observed the whole network and were provided no direct informa-
tion about multi-step, longer-range connections between network 
members (for example, friends of friends), but instead only observed 
dyadic relationships. Despite this learning format, subjects achieved 
above-chance navigation accuracy not only for problems where the 
source was directly friends with the target (80% accuracy at distance 
two, regression coefficient (b) = 1.68, z-score (z) = 14.30, 95% confi-
dence interval (CI) 1.45 to 1.91, P < 0.001), but also for the longer-range 
problems (70% accuracy at distance three, b = 1.06, z = 9.34, 95% CI 0.84 
to 1.28, P < 0.001 and 63% accuracy at distance four, b = 0.66, z = 6.05, 
95% CI 0.44 to 0.87, P < 0.001, all results from mixed-effects logistic 
regression; Fig. 2a and Methods). These results suggest that subjects 
learned a cognitive map that supported flexible, long-range social 
navigation, despite only being provided pairwise information about 
friendships in the network.

Computational models of social navigation
We consider two classes of decision-making strategies that an agent 
could employ to flexibly solve novel social navigation problems: 
model-based planning and caching abstracted representations of 
multi-step relations. A normatively optimal agent would represent 
an internal model of all pairwise friendships within the social network, 
then recursively iterate through those friendships until it computes 
the shortest path between a given source–target pair. In practise, 
online navigation of this kind is time-consuming and computation-
ally costly17, but can be made tractable in small networks using search 
algorithms, such as breadth-first search (BFS) that have previously 
been studied as cognitive ‘path-finding’ models36,37. Here, we test the 
following planning-based models: (1) BFS-forwards (BFS-F), in which 
the agent performs two forwards searches from each of the two can-
didate sources, choosing the source where the target is first found, (2) 
BFS-backwards (BFS-B), in which the agent performs a single search 
starting from the target, choosing the first source that is found, and (3) 
an ideal observer, which computes the shortest path distance between 
each source and target, choosing the source that is closer to the tar-
get. To make these planning models more psychologically plausible, 
our implementations included parameters that captured the human 
tendency to give up and choose randomly during long searches, as 
well as decision noise when choosing between two options (Methods).

Alternatively, an agent could navigate more efficiently by caching 
(that is, pre-computing) relevant knowledge. In the context of social 
navigation, it would be particularly useful to cache knowledge of indi-
viduals’ longer-range, multi-step connections (for example, friends of 
friends). Recent work in cognitive neuroscience points to the SR as a 
useful format for encoding such cached knowledge16–18, including 
cognitive maps of social networks4. The SR approximates the probabil-
ity of transitioning from a source to a target in a given number of steps. 
A single parameter, the successor horizon γ, controls how many steps 
are integrated over, and therefore dictates how the SR integrates knowl-
edge of shorter- versus longer-range connections. As γ → 0, the agent 
represents shorter-range relations, such that the SR only encodes 
one-step relations (that is, direct friendships) when γ = 0. As γ → 1, the 
agent integrates over longer-range connections (for example, friends 
of friends of friends and so on). Once the agent has cached estimates 
of P(target | source, γ), it can then decide between the two possible 
sources using a softmax choice rule with inverse temperature β, con-
trolling how noisily the agent chooses.

Simulation results reveal, a priori, that multi-step abstraction is 
sufficient to achieve high navigation accuracy: higher values of γ were 
associated with greater navigation accuracy for longer-range problems, 
and SR agents achieved uniformly high navigation accuracy for the 

shorter-range problems regardless of γ (Fig. 2b and Methods). These 
results therefore confirm that human subjects’ social navigation deci-
sions could in principle be supported by a cognitive map of multi-step 
relationships, where representation of longer-range relations is sup-
ported by greater abstraction (that is, larger γ; Fig. 2c).

We next fitted this model to subjects’ behaviours before rest 
to test whether multi-step abstraction quantitatively outperforms 
model-based planning in explaining human behaviour in the social 
navigation task (Methods). We used protected exceedance probabil-
ity (PXP) to formally test the probability that one model provided a 
superior fit over all other models under consideration38. The results 
revealed that the SR indeed provided a better group-level fit to the data 
than all online planning models (all PXP > 0.97; Fig. 2d and Methods), 
mirrored in the Akaike weights39 and the proportion of subjects best 
fitted by the SR (Fig. 2d). Therefore, a formal comparison of computa-
tional models suggests that human behaviour on the message-passing 
task is best explained by the use of a cognitive map containing cached 
knowledge of abstract, multi-step relations. Posterior predictive checks 
further confirmed that the planning-based models systematically 
mischaracterize human subjects’ navigation behaviours, while the SR 
model is largely successful in recapitulating human behaviour (Fig. 2e).

Finally, we tested whether each model was able to predict human 
behaviour in a held-out subset of navigation problems (that is, trials 
that were not used to fit model parameters) before rest. These trials 
were unique in that both sources were the same shortest distance away 
from the target, making them equally correct choices to a model-based 
agent. While the planning models do not systematically favour one 
source over the other in these trials (Fig. 2f), humans demonstrate 
preferences for sources that have multiple (relatively) short paths to 
the target, which is mirrored by the SR model predictions (Fig. 2f and 
Supplementary Fig. 13).

Social navigation improves with overnight rest
To test whether a replay-like mechanism might result in improved social 
navigation after an extended period of overnight rest that includes 
sleep, subjects in studies 2 and 3 (N = 96) completed a 2 day procedure. 
The day after their first session, subjects returned to the laboratory and 
completed the social navigation task again. Results reveal that, after 
overnight rest, subjects became significantly more accurate at solv-
ing problems across all distances (distance-two accuracy 81% before 
rest, 82% after overnight rest, b = 0.23, z = 2.91, 95% CI 0.08 to 0.39, 
P = 0.004; distance-three accuracy 73% before rest, 75% after overnight 
rest, b = 0.26, z = 2.99, 95% CI 0.09 to 0.44, P = 0.003; distance-four 
accuracy 65% before rest, 71% after overnight rest, b = 0.43, z = 5.17, 95% 
CI 0.27 to 0.59, P < 0.001, all results from mixed-effects logistic regres-
sion; Fig. 3a). This improvement was particularly pronounced for the 
longest-range distance-four problems compared with the accuracy 
improvement for distance-two problems (b = 0.20, z = 2.36, 95% CI 
0.03 to 0.36, P = 0.018).

To test whether a brief period of awake rest is sufficient to improve 
navigation accuracy, subjects in study 3 (N = 46) were allowed to rest for 
approximately 15 min at the end of the standard day 1 procedure and 
before overnight rest (Fig. 1f). After this brief awake rest period, they 
completed the same memory and navigation tasks again. This awake 
rest was not sufficient for improving navigation accuracy at the group 
level (all P > 0.1; Fig. 3b), suggesting that a longer period of rest (or 
possibly sleep) may be needed to produce significant improvements 
in navigation.

A computational model of replay
In the theoretical framework of the SR, replay is a natural mechanism 
for explaining how overnight rest improves social navigation15–17. The 
knowledge cached by the SR is sensitive to an agent’s observations, 
which could include either direct experience from the environment 
or synthetic experience from offline replay. There are several plausible 
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hypotheses of how SR replay might result in improved navigation. For 
example, a ‘consolidation’ hypothesis suggests that replay fills the gaps 
left by insufficient direct experience, allowing the agent to learn a more 
stable representation15,25. Alternatively, an ‘abstraction’ hypothesis 
predicts that an agent’s ability to successfully solve longer-range nav-
igation problems depends on building increasingly abstract represen-
tations integrating over a greater number of multi-step relations (that 
is, with larger γ)15,16,21. Intuitively, SR replay is likely to be less compre-
hensive during brief periods of awake rest compared with extended 
periods of overnight rest, and it is therefore possible that overnight 
rest helps to stitch knowledge of pairwise relationships into represen-
tations of longer-range multi-step relations, allowing an agent to build 
even more abstract cognitive maps.

To test these hypotheses, we conducted a simulation study  
examining how successfully an artificial agent could solve our social 
navigation problems, given varying amounts of SR replay. For simplic-
ity, we assumed that the agent replayed all friendships in the network in 

one ‘iteration’ before replaying another iteration (that is, 17 undirected 
relations and 34 directed). Past empirical studies of neural replay have 
found that it takes approximately 50 ms to replay a single transition 
between two states (that is, a friendship dyad)24,27,40,41, such that an SR 
agent could replay 50 iterations in the span of approximately 90 s. 
In contrast, an agent lacking an SR replay mechanism would only be 
able to learn from direct experience, and would be limited to the six 
observations of each friendship from the learning task. We note that, 
in translating iterations of SR replay to absolute time, we do not imply 
contiguous, uninterrupted replay, but rather cumulative SR replay 
that could be distributed throughout a longer period of absolute time.

Consistent with the hypothesis that SR replay helps with consoli-
dation, simulation results reveal that even a small amount of SR replay 
is sufficient to dramatically improve navigation accuracy compared 
with an agent that only learns from direct experience (Fig. 3c and  
Methods). However, the simulation also suggests that the benefits 
gained from consolidation rapidly asymptote (Fig. 3c). Therefore, 
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Fig. 2 | Evidence of social navigation. a, Shortly after learning about friendships 
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above-chance accuracy. The trend lines reflect the estimated means from a 
mixed-effects logistic regression model, the error bars reflect estimated 
standard errors (N = 146) and P values are from two-sided tests. b, Simulated 
navigation behaviour from the SR model, which learns multi-step relations 
between network members over a horizon controlled by γ. The softmax inverse 
temperature is fixed at β = 100 for visualization. c, A cognitive map learned with 
greater γ allows efficient representation of longer-range relationships. True 
friendships are colour coded in black. With increasing abstraction, the cognitive 
map begins to reflect inferences about community structure and connections to 
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have been thresholded at P(target | source) > 0.025. d, The SR is the best-fitting 
model in terms of Akaike weights, the proportion of subjects best-fit and  
PXP. e, The simulations of computational model behaviours are based on the 
parameters estimated from human subject behaviours. The bars reflect 
group-level means. f, In a subset of ‘held-out’ navigation problems (that is, not 
used to fit parameters), subjects were presented with two sources that were the 
same path distance away from the target. Despite this, humans frequently 
demonstrated a preference for one source over the other. On these held-out 
trials, the SR has greater out-of-sample likelihoods than the planning models, 
demonstrating that it is better able to explain human subjects’ preferences. The 
bars reflect group-level medians (N = 146). The dashed horizontal lines reflect 
chance-level accuracy.
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replay-as-consolidation may help to explain how people initially 
achieve above-chance navigation performance, but it is unlikely to 
explain navigation improvement after overnight rest. Instead, consist-
ent with an abstraction hypothesis, the simulation reveals that larger 
values of γ are associated with more accurate navigation decisions, 
especially for longer distances (Figs. 2c and 3c).

Given these simulation results and past research showing that  
a variety of mental representations become more abstract during 
sleep31–35,42–46, it may be possible that extended periods of rest enable 
the brain to replay longer sequences through the network during 
overnight rest. Empirically, this would be reflected in human navigation 

behaviours being better characterized by larger values of γ after over-
night rest. As hypothesized, the results reveal a significant group-level 
increase in γ (day 1 median γ = 0.75, day 2 median γ = 0.83, 95% CI dif-
ference in medians [0.009 to∞], one-tailed P = 0.019; Fig. 3d). To fur-
ther verify that individual-level changes in estimated γ are associated 
with greater navigation accuracy, we used Spearman rank correlation 
to test whether changes in estimated γ track changes in accuracy for 
shorter- and longer-range navigation problems. The results reveal that 
increased γ on day 2 was associated with improved navigation accuracy 
for the longer-range problems (distance-three ρ = 0.55, one-tailed 
P < 0.001 and distance-four ρ = 0.47, one-tailed P < 0.001; Fig. 3e) but 
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not for the shorter-range problems (distance-two ρ = −0.23, one-tailed 
P = 0.987; Fig. 3e). These results are therefore consistent with the  
proposal that replay affords greater abstraction of a cognitive map 
that privileges longer-range navigation problems.

As before, we tested the alternative hypothesis that subjects’ 
behaviours were better described by model-based planning. The 
results reveal that, on both days, the SR model outperforms all planning  
models (all PXP > 0.97). Finally, in addition to the formal model com-
parison favouring the SR over the planning models, the results also 
reveal that subjects’ memory performance significantly decreased after 
overnight rest (b = −0.29, z = −4.65, 95% CI −0.41 to −0.17, P < 0.001). This 
is inconsistent with a theory of model-based planning, as decreased 
memory performance suggests that an individual’s internal model 
gets worse, not better, following overnight rest.

Offline gains in social navigation rely on cached 
knowledge
Why is longer-range social navigation particularly improved by build-
ing more abstract SRs? The longest navigation problems in our studies 
span the two communities within the network, which necessitates that 
information flows through an information broker connecting the 
groups (Fig. 2c). Acquiring knowledge about possible routes passing 
through the broker is therefore critical for solving the longer-range 
navigation problems, and this knowledge becomes especially useful 
when information traverses across the communities. In theory, SRs 
built from greater values of γ should incorporate more multi-step con-
nections between the broker and other network members, thus lever-
aging the broker’s fundamental role in information flow. Our 
simulations reveal that as SRs become more abstract (with larger values 
of γ), information about multi-step connections with the broker is 
cached (Fig. 2c), which helps explain the observed improvement of 
our subjects in navigating the longest-range navigation problems. In 
other words, our simulations reveal how abstract cognitive maps 
extract important structural knowledge from more granular knowledge 
about individual friendships.

If subjects are indeed relying on cached structural knowledge to 
improve social navigation that spans communities, their performance 
should be sensitive to structural changes involving the broker, such as 
the broker breaking off a friendship. An agent relying on cached struc-
tural knowledge about the broker’s connections should continue to 
make choices as if no relationship has ruptured, since the agent either 
will need additional experience to learn about the network change or 
will need to re-cache the modified multi-step relationships through 
replay (either offline or ‘on-task’) to correctly navigate the modified 
network. In contrast, an agent employing model-based planning would 
be able to rapidly incorporate that change into its internal model and 
alter its navigation behaviour accordingly. To test whether subjects 
show evidence of using cached representation, we administered a tran-
sition re-evaluation procedure on day 2 in studies 2 and 3 (refs.16,17) 
(Fig. 1f). In a final task, subjects were informed that two people were no 
longer friends and that two other people had newly become friends. We 
engineered these changes such that the critical bridge (that is, includ-
ing the broker) between the two communities was severed and formed 
elsewhere, while no other structural changes were made to either of 
the two communities (Fig. 1d,e).

The results reveal that these structural changes to the network 
were sufficient to abolish subjects’ improved accuracy for longer-range 
navigation problems after overnight rest (distance-three b = 0.20, 
z = 2.33, 95% CI 0.03 to 0.37, P = 0.020 and distance-four b = 0.45, 
z = 5.51, 95% CI 0.29 to 0.61, P < 0.001), but not shorter-range prob-
lems (distance-two b = 0.14, z = 1.77, 95% CI −0.02 to 0.30, P = 0.077; 
Fig. 4a and Supplementary Table 6), providing evidence that subjects 
relied on cached structural knowledge to inform longer-range social 
navigation decisions. This decrease in navigation accuracy is particu-
larly noteworthy given that subjects had, just 30 min prior, exhibited 

evidence of improved navigation following overnight rest. Indeed, after 
transition re-evaluation, subjects’ navigation accuracy was statistically 
indistinguishable from their initial performance before overnight rest 
(Fig. 4b and Supplementary Table 6).

To formally test whether the cached representation was more con-
sistent with multi-step abstraction, rather than model-based planning, 
we took advantage of the fact that subjects completed two navigation 
tasks on the same day (that is, before and after transition re-evaluation). 
This aspect of the study design enabled us to predict post re-evaluation 
behaviour using the computational model parameters that had previ-
ously been estimated from pre re-evaluation behaviour, such that the 
data used to fit the models’ parameters was completely different from 
the data used to test the models’ goodness of fit (Methods). Not only 
does the SR has the highest out-of-sample likelihood weights (con-
ceptually similar to Akaike weights, but based on raw log likelihood 
rather than the Akaike Information Criterion (AIC), but it is also the 
absolute best-fitting model for the highest proportion of subjects, 
and is favoured over all planning models in a Bayesian model selection 
analysis (PXP = 0.98; Fig. 4b).

Given empirical evidence that subjects cached representations of 
multi-step relationships, we used simulation to test how an SR agent 
might use ‘on-task’ replay to quickly re-cache the structure of the net-
work after transition re-evaluation47. The simulation results reveal that 
an SR agent that does no updating (that is, continues to use the cached 
representation it had learned for the original network) is generally 
unable to solve distance-four problems, with accuracy falling at, or 
even below, chance levels (Fig. 4c). In contrast, an SR agent that learns 
from replay exhibits dramatic gains in accuracy after even one iteration 
of replay (that is, replaying all of the friendships in the re-evaluated 
network; Fig. 4c). Therefore, the simulation results demonstrate that 
even a relatively small amount of updating is sufficient for explaining 
how cached SRs can achieve above-chance navigation accuracy after 
transition re-evaluation.

Discussion
Stanley Milgram’s seminal studies, more than 50 years ago, demon-
strated that people are able to efficiently pass messages through a large, 
complex social network, hinting at a human capacity for representing 
social relationships in a format that supports social navigation1. Here, 
we provide a new experimental framework for closing fundamental 
gaps in our mechanistic understanding of how people adaptively 
navigate social relationships. We find that people are proficient at 
solving social navigation problems requiring inference about how 
information spreads through a network. Indeed, people can accomplish 
above-chance navigation accuracy immediately after learning about a 
novel network, even for longer-range problems that require integrat-
ing knowledge over long chains of relationships (friends of friends of 
friends of friends). Overnight rest further improves social navigation 
accuracy, and has an especially pronounced effect for performance 
on problems involving longer-range relationships spanning different 
communities. Drawing inspiration from decades of research on spatial 
navigation in rodents and humans, we propose both a representational 
format enabling information flow to be tracked in the human mind 
and the cognitive mechanisms for building these complex mental 
representations.

First, successful navigation through a network is aided by repre-
senting it as an abstract cognitive map encoding not only direct, 
one-step friendships, but also integrating over indirect, multi-step 
connections such as being a friend of a friend. These abstract mental 
representations can be learned using algorithms that extrapolate 
multi-step relationships from disjointed, pairwise observations of 
friendship. People’s use of multi-step abstraction allows them to build 
more holistic representations of how people in the network are con-
nected to one another and suggests that abstraction is the linchpin of 
how social navigation problems are solved3,4.
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Second, the brain further refines these cognitive maps of social 
networks during overnight rest using a replay-like mechanism that 
efficiently reuses experiences from prior learning to generate new, 
synthetic learning observations. This account is consistent with 
research showing that animals not only replay prior experiences24,30,48, 
but that they also generate entirely new, synthetic ‘walks’ through 
the environment29,49. Moreover, the fact that we observe the greatest 
boost in navigational improvement for long-range problems is consist-
ent with past findings demonstrating that sleep privileges memory 
abstraction31–35. We find that, after overnight rest, behaviour was con-
sistent with larger SR gammas on the second day of testing, which aligns 
with prior work showing that sleep appears to be important for building 
the kinds of highly abstract mental representations that reveal a social 
network’s deeper structure, such as the existence of communities and 
the individuals that bridge them15.

Our studies lay the groundwork for addressing several important 
questions in future work. Here, we highlight just a few of many promis-
ing directions. We establish that a replay-like mechanism is needed to 
explain how navigation performance improves overnight, but a fuller 
computational account of such a mechanism requires characterizing 
the content and amount of replay experienced. Past neurobiological 
findings strongly suggest that replay sequences consist of items that 

were experienced close together in time (for example, adjacent loca-
tions in a maze that are part of the same path)24. However, it remains 
unknown whether this holds true in the context of social networks, 
where an individual’s observations of social interactions may be 
sequentially or temporally disjointed. It also remains unknown how 
much neural replay is necessary for improving decision making (in 
offline replay overnight and/or in on-task replay47), and whether a com-
putational model could provide reasonable estimates of the amount of 
neural replay occurring in individual subjects. Finally, future research 
should test whether the benefits of SR replay are linked to sleep specifi-
cally or can also be observed with longer periods of awake rest.

A related question revolves around the neural instantiation of 
multi-step abstraction. Although we leverage the SR in this work, we 
note that multi-step abstraction is a much more general representa-
tional strategy that could be implemented using many mechanisms 
with varying degrees of biological plausibility9,19,20. Despite the SR 
depending heavily on the temporal dynamics of experience14,50, 
multi-step abstraction appears to describe how people represent 
social networks even when observations of social interaction are tem-
porally disjointed4. It is therefore possible that the SR successfully 
describes social network representation because it is a useful method 
for discovering structure15, rather than being a faithful model of neural 
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Fig. 4 | Evidence of cached structural knowledge. a, After being informed of 
changes in friendship (‘transition re-evaluation’ in which the link between the 
bridging nodes was severed), human subjects’ navigation accuracy significantly 
decreased, relative to the improved navigation they had exhibited earlier that 
same day (that is, after overnight rest). The trend lines reflect the estimated 
means from a mixed-effects logistic regression model, the error bars reflect 
estimated standard errors (N = 96) and P values are from two-sided tests. b, Using 

out-of-sample likelihoods to do model comparison, the SR is the best-fitting 
model in terms of likelihood weights (similar to Akaike weights), the proportion 
of subjects best-fit and PXP. c, The simulations suggest that even a small 
amount of on-task SR replay helps an agent re-cache its representation of the 
social network after transition re-evaluation, resulting in improved navigation 
accuracy. The dashed horizontal lines reflect chance-level accuracy.
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computation. A particularly intriguing possibility is that the brain may 
encode components of a network’s structure (that is, basis sets) that 
afford greater flexibility in assembling useful representations when 
navigating a variety of social environments9. There are many ways that 
the brain could perform inference over graphs20,51–53, and it may be use-
ful for future work to examine what kinds of basis sets are afforded by 
various methods of graph inference, including multi-step abstraction.

In summary, people can reason about information flow efficiently 
in social networks by caching knowledge about long-range connections 
in abstracted cognitive maps. Our results provide mechanistic insights 
into how these abstract cognitive maps are learned and shaped offline 
by a replay-like mechanism that allows the successful navigation over 
longer-range friendships.

Methods
Subjects
In study 1, we recruited N = 50 subjects (34 female, 15 male and 1 non- 
binary; mean age 20.6 years old, s.d. = 2.81 years). In study 2, we 
recruited N = 50 subjects; one subject’s demographics were never 
recorded due to experimenter error. Of subjects whose demographics  
are known, 31 were female, 17 male and 1 was non-binary; the mean 
age was 23.1 years old, s.d. = 4.63 years. In study 3, we recruited N = 50 
subjects, but lost four data points due to experimenter error, leaving 
a final sample size of N = 46 (30 female, 16 male; mean age 23.0 years 
old, s.d. = 4.46 years). All subjects received US $10 per hour as mon-
etary compensation for their first study session. For the second study 
session, subjects in study 2 were paid US $15, and subjects in study 3 
were paid US $20. Subjects in studies 2 and 3 could earn additional 
cash bonuses of up to US $5 depending on how accurately they solved 
social navigation problems. All study procedures were conducted in a 
manner approved by the Brown University institutional review board 
(protocol 1607001555), and all subjects provided informed consent.

Overview
In study 1, a 1-day study (Fig. 1f), subjects first learned about a novel 
social network (Fig. 1a), completed a memory test (Fig. 1b) and then 
were tasked with solving social navigation problems (Fig. 1c) about 
the network they had just learned about (Fig. 1d). Details about each 
procedure are provided in subsequent sections.

Study 2 was a 2-day study (Fig. 1f), where day 1 was identical to 
study 1. On day 2, subjects returned to the laboratory 24 h after their 
first session. In this second session, subjects completed the same 
memory test and social navigation task as they had on day 1, then 
completed the social navigation task a third time after being informed 
about changes in network members’ friendships (Fig. 1e).

Study 3 was a 2-day study that was nearly identical to study 2, 
with one key modification. To test the hypothesis that brief awake rest 
was sufficient to improve navigation accuracy, we added a 15 min rest 
period at the end of day 1, after which subjects completed the memory 
test and social navigation task again (Fig. 1f).

Learning task
Subjects were required to learn the friendships within an artificial social 
network. To familiarize subjects with the 13 network members, the task 
first presented a screen presenting all network members’ faces and 
names, which subjects could examine for as much time as they liked. 
Afterwards, subjects learned about the friendships between these 13 
network members from a computerized ‘flashcard’ game (Fig. 1a). On 
each trial, subjects were shown one ‘target’ network member and were 
required to find all of the target’s friends among the remaining 12 cards, 
which were initially displayed face down. The subjects responded by 
clicking on face-down cards. Cards flipped face up and were outlined 
in green when subjects made correct responses. Incorrect responses 
were indicated by the card remaining face down and being outlined in 
red (Fig. 1a). Once all of the target’s friends were identified, subjects 

were given 3 s to review the target’s friends before the task moved on 
to the next target.

All network members were presented as targets and subjects 
cycled through all targets in a single block of trials before moving to the 
next block. The spatial mapping of network members’ cards remained 
consistent for the first three blocks, then was randomly shuffled for 
the last three blocks. This was done to ensure that subjects were truly 
learning about friendships and not simply spatial locations. Overall, 
the flashcard learning task took 20–25 min to complete. All face stimuli 
were drawn from the Chicago Face Database54.

Memory test
Subjects completed a memory test immediately after the learning task 
(Fig. 1b). Each trial presented a target network member at the top of the 
screen, and all remaining network members were shown below in two 
rows of six photographs. Subjects responded by clicking on network 
members they believed to be the target’s friend. No feedback was ever 
presented. All responses were self-paced, and the task took 5–10 min 
to complete.

Social navigation task
On each trial of the ‘message-passing’ task, subjects chose between 
two sources to pass a message to a given target (Fig. 1c). Subjects were 
explicitly informed that, depending on their choices, the message could 
be delivered efficiently, inefficiently or not at all. All primary analyses 
were performed on trials where there was one unambiguously cor-
rect answer (based on shortest path distance). No feedback was ever 
presented. All responses were self-paced, and the task typically took 
30–45 min to complete on day 1 (Fig. 1f). This procedure was identical 
across all three studies.

To test whether a brief period of awake rest was sufficient to 
improve navigation accuracy, subjects in study 3 completed the initial 
message-passing task on day 1, rested for about 15 min and then com-
pleted the same navigation task again (Fig. 1f). During the rest period, 
subjects completed a task that was designed to keep the social network 
salient in subjects’ minds while being easy enough that subjects were 
actually able to rest. For the vast majority of the rest period, subjects 
were shown a fixation cross on a blank screen. Sporadically, the fixa-
tion cross was replaced with a photograph of a network member for 
1.5 s. Across the entire 15 min period, 140 photographs were displayed 
at random and 50% of them were presented upside-down. The only 
task was to press a button when a photograph appeared upside-down.

Finally, to test for improvements in navigation performance, sub-
jects completed the same message-passing task on day 2 in studies 2 
and 3 (Fig. 1f). Afterwards, we administered a transition re-evaluation 
procedure to test how alterations in network structure would impact 
navigation accuracy (Fig. 1f). Specifically, we instructed subjects that 
two individuals who had previously been friends were no longer friends 
(Fig. 1d,e) and that a new friendship had been formed between two 
other network members (Fig. 1e). We designed these changes specifi-
cally to break a critical bridge between two communities and create 
a new bridge elsewhere. These changes in friendship invalidated the 
longer-range relationships cached by the SR, requiring subjects to 
quickly adapt to maintain high navigation accuracy. Subjects were not 
explicitly informed that these changes in friendship fundamentally 
altered the network’s structure.

Behavioural analysis
We used the R package glmmTMB to estimate mixed-effects logistic 
regression models55. Whenever appropriate, we pooled data across 
the three studies to maximize statistical power. To account for 
non-independent observations, the models included random inter-
cepts for each subject, as well as a random intercept for each study. 
To test memory accuracy, we pooled data from studies 2 and 3 and 
estimated a model where study session (that is, day 1 versus day 2) was 

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-024-01990-w

both a fixed-effects predictor and a random slope. In the social navi-
gation task, shortest path distance was defined as the graph distance 
between the correct source and target after removing the ‘message 
sender’ from the network (that is, because the source was not permit-
ted to pass the letter back to the sender). In total, subjects completed 
a total of 159 trials. Of these, 14 trials presented two sources that had 
the same shortest path distance (that is, both answers were correct), 
27 trials required online re-evaluation of path distance (that is, because 
the shortest possible path would have required sending the letter 
back to the sender) and 3 trials required both online re-evaluation and 
had the same shortest path distance. Our main analyses focussed on 
the remaining subset of 115 trials where there was an unambiguously 
correct answer.

We tested four behavioural hypotheses in total. Our first hypo-
thesis tested whether subjects were able to solve navigation problems 
with above-chance accuracy on day 1, immediately after learning about 
the social network (Fig. 1f). As this procedure occurred in all three 
studies, we pooled data from all studies together. We included pre-
dictors for shortest path distance, which we coded as a categorical  
variable, and additionally estimated random slopes for shortest path 
distance per subject. To test whether accuracy was above chance 
at each distance (that is, shortest paths of two, three and four), we 
iteratively re-parameterized the model by making each distance the 
reference category. Our second hypothesis tested whether subjects’ 
navigation accuracy improved on day 2 after overnight rest (Fig. 1f), 
and therefore pooled data from studies 2 and 3. This model included 
fixed-effects predictors for shortest path distance, the study session  
(that is, day 1 versus day 2) and their interaction. The model also 
included per-subject random slopes for shortest path distance and 
study session. Distance-conditional changes in navigation accuracy 
were estimated using the same re-parameterization strategy. Our 
third hypothesis tested whether 15 min of awake rest would improve 
navigation accuracy. This model was functionally identical to the 2 day 
model, except that it used data from the study 3 navigation tasks before 
rest and after awake rest. Finally, our fourth hypothesis tested whether 
changes in the network (that is, transition re-evaluation) would result 
in attenuated navigation accuracy using a model that was similar to 
the 2 day model, but with two key differences: (1) the model compared 
navigation performance from before rest, after overnight rest and after 
transition re-evaluation and (2) to control for the possible confound 
that the transition re-evaluated trials were more difficult than the main 
set of navigation trials, the model included an additional predictor 
indexing the absolute difference in the two sources’ shortest path  
distance to the target, which serves as a proxy for task difficulty  
(Supplementary Fig. 14).

SR
In its typical use in reinforcement learning, the SR encodes the likeli-
hood that an agent starting at state s will find itself in state t  after taking 
some number of steps dictated by the successor horizon γ  (that is,  
the lookahead L = 1

1−γ
). This has a straightforward translation to social 

navigation problems, such as the message-passing task, which requires 
computing the probability that a message given to a particular source 
will be passed to the target in some number of steps. The SR is encoded 
as the matrix M  with dimensions N × N, where N  is the number of net-
work members. Once the SR is learned, an agent could estimate the 
likelihood that a message given to source s  will make it to target t   
simply by looking up the value M(s, t). Here, we use function notation 
to index row s and column t  of the matrix M.

In all SR-replay simulations, our implementation used a standard 
delta-rule method to update M (equation (1) and Figs. 3c and 4c). When 
network members s and t  are observed together, this is encoded in the 
one-hot vector 1(t), which is a vector of length N  filled with zeroes 
except at the index t. The observation diverges from the agent’s prior 
expectation M(s) (this notation refers to the entire row s, as the SR 

retrieves and updates M  in a row-wise manner), and therefore creates 
a prediction error. The agent then chains together knowledge of the 
friendships of the s and t  by adding a fractional amount of M(t) to M(s), 
controlled by the successor horizon γ. This overall prediction error δ  
then drives the learning update, tempered by the learning rate α, which 
was fixed to 0.1 following past work4,16,23. As friendships are bidirec-
tional in our study, each learning event prompted two updates, one for 
s and another for t. In the simulations, we treated each novel observa-
tion as a single learning event. As the learning task consisted of six 
blocks, each containing learning events for both s → t and t → s, the 
no-replay SR learned from 12 observations of each friendship.

M (s) ← M (s) + αδ,δ = 1 (t) + γM (t) −M (s) . (1)

In all parameter fitting, we used an analytic form of the SR to  
generate asymptotic representations (equation (2) and Fig. 2b–e), 
where I is the identity matrix, T is the transition matrix and X−1 refers 
to the matrix inverse.

M =
∞
∑
k=0

γkTk = (I − γT )−1. (2)

We modelled an agent’s choice between two candidate sources 
using a softmax choice rule (equation (3)), such that the agent retrieves 
the relevant estimates from M(s, t), then probabilistically chooses  
the higher-valued option. Choices are made more deterministically  
as inverse temperature β → ∞, and more stochastically as β → 0.

P (choose SourceA)

= exp[βM (s, t | s = SourceA)]
exp[βM (s, t |s = SourceA)] + exp [ βM (s, t | s = SourceB)

.
(3)

Model-based planning
To compare multi-step abstraction against model-based planning,  
we tested several psychologically plausible mechanisms through  
which an agent could perform online planning.

The BFS-forwards model assumes that people perform two 
forwards searches in parallel, one from each source, until the target 
appears in one of the searches. On each iteration, the agent randomly 
chose to search source A or B further. When first searching a given 
source, the agent would retrieve all of that source’s friends. Subse-
quent searches would retrieve friends of friends, friends of friends 
of friends, and so on. We assumed that the agent had the capacity to 
remember what network members had already been retrieved in each 
of the two searches, and the agent stopped searching once the target 
was discovered. It is therefore possible that the target may, by chance, 
first appear in the search associated with the incorrect answer, such 
that the asymptotic predictions of the BFS-forwards model fall short 
of perfect accuracy. The BFS-forwards model contains a single ‘search 
threshold’ parameter, which causes the agent to become increasingly 
likely to ‘give up’ and choose randomly when searches require iterating 
across long distances.

The BFS-backwards model assumes that people start a single 
search from the target, then iterate backwards through the network 
until one of the two sources is found. Backwards searches are norma-
tively more efficient than forwards searches, and humans appear to pre-
fer using backwards search when it is possible for them to do so37. If the 
backwards search is allowed to run to completion, this guarantees that 
the subject will choose the correct answer, as BFS always finds the short-
est path distance between two nodes in a graph. Like BFS-forwards, our 
implementation of BFS-backwards contains a single search threshold 
parameter. Although the BFS-backwards and BFS-forwards models use 
the same underlying search mechanism, we note that they make very 
different predictions about human behaviour (Supplementary Fig. 1).

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-024-01990-w

To our knowledge, there is no analytic method for computing 
choice and ‘reaction time’ distributions from a BFS-based search pro-
cess, so we simulated how our BFS agent would solve each trial 5,000 
times (description of algorithm in Supplementary Information). To fit 
parameters to subjects’ behaviour, we defined logistic loss as the  
difference between a subject’s choice on a particular trial and the aver-
age simulated choice (from 5,000 iterations) of the BFS agent on that 
trial (equation (4)). The search threshold parameter τ  was estimated 
as the value at which a softmax with β = 1  was indifferent between 
choosing to complete a search (based on the average length of the  
BFS search for a given trial) and giving up (equation (5)). Likelihoods 
were weighted accordingly (equation (6)). For example, if an agent  
was estimated to be 60% likely to give up during a particularly long 
search, the BFS prediction contributed 40% to the overall likelihood.

P (choose SourceA|completing BFS) = avg(choose SourceA), (4)

P (completing BFS) = exp (τ)
exp (τ) + exp (avg [search length])

, (5)

P (choose SourceA)

= [P (choose SourceA|completing BFS) × P (completing BFS)]

+[0.5 × (1 − P (completing BFS))].

(6)

Finally, the ideal observer model assumes that people are able to 
compute the shortest path distances in the graph, and subsequently 
chooses between the two options using a softmax choice rule. We note 
that there are a number of psychologically plausible processes an agent 
could use to compute shortest path distances, including backwards 
BFS. Our goal is not to adjudicate between different process models, 
but rather to test whether any such ideal observer could provide a 
compelling alternative explanation for our empirical results. This 
model contains a single parameter, the softmax inverse temperature 
β, which controls the agent’s sensitivity to the sources’ shortest path 
distances from the target (equation (7)).

P (choose SourceA)

= exp[βdist(SourceA,Target)]
exp[βdist(SourceA,Target)] + exp[βdist(SourceB,Target)] .

(7)

Computational modelling
Maximum-likelihood parameter-fitting was performed using R’s default 
optimizer, using the Nelder–Mead algorithm for the two-parameter SR 
and the Brent algorithm for all the single-parameter planning models. 
Parameters were fit independently for each subject. The SR model was 
re-estimated 25 times, keeping only the estimates that best maximized 
the likelihood. Single-parameter models were only estimated once, 
as the fitting procedure is akin to grid search. Plots of all estimated 
parameters can be found in Supplementary Fig. 4.

To verify that parameter estimates are psychologically meaningful, 
we performed parameter recovery and model confusability analyses 
for all models under consideration (Supplementary Fig. 5)56. Parameter 
recovery analyses indicate that all key parameters are straightforwardly 
interpretable, and the model confusability analyses confirm that the 
parameter fitting procedure is not biased in favour of our hypothesis.

In our primary model comparison procedure, we found converg-
ing evidence from three metrics: Akaike weights, the proportion of 
subjects best fit by a particular model and PXP. Two of these met-
rics are more descriptive: Akaike weights quantify the conditional 
probabilities for each model based on differences in AIC39, and the 
proportion of subjects best-fit by a particular model provides an intui-
tive sense for models’ goodness of fit. PXP provides a formal test of a 
model’s group-level fit compared with other candidate models38, and 

was computed using R software written by Matteo Lisi (https://github.
com/mattelisi/bmsR). As our measure of log evidence, we used the 
Akaike information criterion corrected for relatively few data points 
(that is, AICc), which penalizes models in proportion to the number of 
free parameters estimated39.

Using the parameters estimated from the primary trials of interest 
(detailed in ‘Behavioural analysis’), we tested how well each model is 
able to explain held-out data by computing out-of-sample likelihoods. 
This was done by simulating the models’ predictions given the esti-
mated parameters, then computing the resulting logistic loss based 
on subjects’ actual behaviours in the held-out data. After computing 
out-of-sample likelihoods for the transition re-evaluated navigation 
trials, we performed formal model comparison as detailed above, 
except using log-likelihoods rather than AICc, as no parameters were 
fit for out-of-sample prediction.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data needed to reproduce the analyses are available in a publicly 
accessible GitHub repository at https://github.com/feldmanhalllab/
network-navigation-replay (ref. 57).

Code availability
All code needed to reproduce the analyses are available in a publicly 
accessible GitHub repository at https://github.com/feldmanhalllab/
network-navigation-replay (ref. 57).
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Reporting on sex and gender Our demographic information includes participants' self-reported gender identity. No analyses were performed using gender 
variables, as the phenomena of interest are not expected to differ based on sex or gender identity.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

No analyses were performed using race, ethnicity, or other socially relevant groupings.

Population characteristics See details in "Behavioural & social sciences study design" section.

Recruitment Participants were recruited using non-targeted ads distributed among the university and the surrounding community. This 
recruitment strategy, common in psychology research, is likely to draw heavily from a 'WEIRD' population (Western, 
Educated, Industrialized, Rich, and Democratic), which is known not to be representative of many human populations. 
 
All subjects received $10/hour as monetary compensation for their first study session. For the second study session, subjects 
in study 2 were paid $15, and subjects in study 3 were paid $20. Subjects in studies 2-3 could earn additional cash bonuses of 
up to $5 depending on how accurately they solved social navigation problems.

Ethics oversight The study protocol was approved by Brown University's Institutional Review Board (Protocol 1607001555),  and all subjects 
provided informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
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Study description We used a quantitative experimental study design.

Research sample The research sample consisted of undergraduate and graduate students at Brown University, as well as adult volunteers from the 
surrounding community. In study 1, we recruited N = 50 subjects (34 female, 15 male, one nonbinary; mean age = 20.6 years old, SD 
= 2.81). In study 2, we recruited N = 50 subjects; one subject’s demographics were never recorded due to experimenter error. Of 
subjects whose demographics are known, 31 were female, 17 male, and one nonbinary; the mean age was 23.1 years old, SD = 4.63. 
In study 3, we recruited N = 50 subjects, but lost four datapoints due to experimenter error, leaving a final sample size of N = 46 (30 
female, 16 male; mean age = 23.0 years old, SD = 4.46). The research sample reflects a convenience sampling strategy, and therefore 
may not be a representative sample.

Sampling strategy We used a convenience sample in this work. Using G*Power, we determined that we would need a sample of N = 41 to achieve 80% 
power using a paired t-test with an assumed effect size of Cohen's d = 0.4. We therefore aimed to recruit N = 50 for each of the three 
studies. We further maximized statistical power by pooling data from the three studies in a mixed-effects regression model whenever 
possible.

Data collection We collected data using a computerized task. Participants were allowed to complete the task in a private room while the researchers 
waited in an outside room in case participants had any questions or concerns. Researchers were not blind to the experimental 
condition or study hypothesis during data collection.

Timing Data for study 1 were collected from November 23, 2021 through March 25, 2022. Data for study 2 were collected from April 21, 
2022 through June 17, 2022. Data for study 3 were collected from February 22, 2023 through June 9, 2023.

Data exclusions No data were excluded from the analysis, though four datapoints were lost in study 3 due to experimenter error (see above).

Non-participation No participants dropped out or declined participation.

Randomization We used a within-subjects study design, and therefore no randomization was used.
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